Перевод: со всех языков на все языки

со всех языков на все языки

British Ports Association

  • 1 British Ports Association

    Abbreviation: BPA

    Универсальный русско-английский словарь > British Ports Association

  • 2 BPA

    1) Медицина: blood products aerobic
    2) Американизм: Bonneville Power Administration
    5) Бухгалтерия: blind persons allowance
    6) Автомобильный термин: mechanical bypass air
    7) Ветеринария: British Pig Association
    8) Грубое выражение: Big Powerful Ass
    9) Сокращение: Basic Pricing Agreement, Berm Processing Assembly, Book Publishers Association, British Pediatric Association, British Ports Association, Bureau of Public Affairs, Business Publications Audit of Circulation Inc. (for 2nd class permit audits), blanket purchasing agreement, БФА (Бисфенол А - bisphenol A, добавка - стабилизатор поликарбонатных пластиков. Токсичен.)
    10) Иммунология: burst-promoting activity
    13) Деловая лексика: Business Process Automation
    14) Глоссарий компании Сахалин Энерджи: Business Process Analysis
    15) Полимеры: bisphenol A
    16) Автоматика: break point address
    17) Нефтеперерабатывающие заводы: нижнее циркуляционное орошение (bottom pumparound)
    18) NYSE. B P Amoco, P. L. C.

    Универсальный англо-русский словарь > BPA

  • 3 Meek, Marshall

    SUBJECT AREA: Ports and shipping
    [br]
    b. 22 April 1925 Auchtermuchty, Fife, Scotland
    [br]
    Scottish naval architect and leading twentieth-century exponent of advanced maritime technology.
    [br]
    After early education at Cupar in Fife, Meek commenced training as a naval architect, taking the then popular sandwich apprenticeship of alternate half years at the University of Glasgow (with a Caird Scholarship) and at a shipyard, in his case the Caledon of Dundee. On leaving Dundee he worked for five years with the British Ship Research Association before joining Alfred Holt \& Co., owners of the Blue Funnel Line. During his twenty-five years at Liverpool, he rose to Chief Naval Architect and Director and was responsible for bringing the cargo-liner concept to its ultimate in design. When the company had become Ocean Fleets, it joined with other British shipowners and looked to Meek for the first purpose-built containership fleet in the world. This required new ship designs, massive worldwide investment in port facilities and marketing to win public acceptance of freight containers, thereby revolutionizing dry-cargo shipping. Under the houseflag of OCL (now POCL), this pioneer service set the highest standards of service and safety and continues to operate on almost every ocean.
    In 1979 Meek returned to the shipbuilding industry when he became Head of Technology at British Shipbuilders. Closely involved in contemporary problems of fuel economy and reduced staffing, he held the post for five years before his appointment as Managing Director of the National Maritime Institute. He was deeply involved in the merger with the British Ship Research Association to form British Maritime Technology (BMT), an organization of which he became Deputy Chairman.
    Marshall Meek has held many public offices, and is one of the few to have been President of two of the United Kingdom's maritime institutions. He has contributed over forty papers to learned societies, has acted as Visiting Professor to Strathclyde University and University College London, and serves on advisory committees to the Ministry of Defence, the Department of Transport and Lloyd's Register of Shipping. While in Liverpool he served as a Justice of the Peace.
    [br]
    Principal Honours and Distinctions
    CBE 1989. Fellow of the Royal Academy of Engineering 1990. President, Royal Institution of Naval Architects 1990–3; North East Coast Institution of Engineers and Shipbuilders 1984–6. Royal Designer for Industry (RDI) 1986. Royal Institution of Naval Architects Silver Medal (on two occasions).
    Bibliography
    1970, "The first OCL containerships", Transactions of the Royal Institution of Naval Architects.
    FMW

    Biographical history of technology > Meek, Marshall

  • 4 Russell, John Scott

    SUBJECT AREA: Ports and shipping
    [br]
    b. 9 May 1808 Parkhead, near Glasgow, Scotland
    d. 8 June 1882 Isle of Wight, England
    [br]
    Scottish engineer, naval architect and academic.
    [br]
    A son of the manse, Russell was originally destined for the Church and commenced studies at the University of St Andrews, but shortly afterwards he transferred to Glasgow, graduating MA in 1825 when only 17 years old. He began work as a teacher in Edinburgh, working up from a school to the Mechanics Institute and then in 1832 to the University, where he took over the classes in natural philosophy following the death of the professor. During this period he designed and advised on the application of steam power to road transport and to the Forth and Clyde Canal, thereby awakening his interest in ships and naval architecture.
    Russell presented papers to the British Association over several years, and one of them, The Wave Line Theory of Ship Form (although now superseded), had great influence on ship designers of the time and helped to establish the formal study of hydromechanics. With a name that was becoming well known, Russell looked around for better opportunities, and on narrowly missing appointment to the Chair of Mathematics at Edinburgh University he joined the upand-coming Clyde shipyard of Caird \& Co., Greenock, as Manager in 1838.
    Around 1844 Russell and his family moved to London; following some business problems he was in straitened circumstances. However, appointment as Secretary to the Committee setting up the Great Exhibition of 1851 eased his path into London's intellectual society and allowed him to take on tasks such as, in 1847, the purchase of Fairbairn's shipyard on the Isle of Dogs and the subsequent building there of I.K. Brunel's Great Eastern steamship. This unhappy undertaking was a millstone around the necks of Brunel and Russell and broke the health of the former. With the yard failing to secure the order for HMS Warrior, the Royal Navy's first ironclad, Russell pulled out of shipbuilding and for the remainder of his life was a designer, consultant and at times controversial, but at all times polished and urbane, member of many important committees and societies. He is remembered as one of the founders of the Institution of Naval Architects in 1860. His last task was to design a Swiss Lake steamer for Messrs Escher Wyss, a company that coincidentally had previously retained Sir William Fairbairn.
    [br]
    Principal Honours and Distinctions
    FRS 1847.
    Bibliography
    John Scott Russell published many papers under the imprint of the British Association, the Royal Society of Arts and the Institution of Naval Architects. His most impressive work was the mammoth three-volume work on shipbuilding published in London in 1865 entitled The Modern System of Naval Architecture. Full details and plans of the Great Eastern are included.
    Further Reading
    G.S.Emmerson, 1977, John Scott Russell, a Great Victorian Engineer and Naval Architect, London: Murray
    FMW

    Biographical history of technology > Russell, John Scott

  • 5 Armstrong, Sir William George, Baron Armstrong of Cragside

    [br]
    b. 26 November 1810 Shieldfield, Newcastle upon Tyne, England
    d. 27 December 1900 Cragside, Northumbria, England
    [br]
    English inventor, engineer and entrepreneur in hydraulic engineering, shipbuilding and the production of artillery.
    [br]
    The only son of a corn merchant, Alderman William Armstrong, he was educated at private schools in Newcastle and at Bishop Auckland Grammar School. He then became an articled clerk in the office of Armorer Donkin, a solicitor and a friend of his father. During a fishing trip he saw a water-wheel driven by an open stream to work a marble-cutting machine. He felt that its efficiency would be improved by introducing the water to the wheel in a pipe. He developed an interest in hydraulics and in electricity, and became a popular lecturer on these subjects. From 1838 he became friendly with Henry Watson of the High Bridge Works, Newcastle, and for six years he visited the Works almost daily, studying turret clocks, telescopes, papermaking machinery, surveying instruments and other equipment being produced. There he had built his first hydraulic machine, which generated 5 hp when run off the Newcastle town water-mains. He then designed and made a working model of a hydraulic crane, but it created little interest. In 1845, after he had served this rather unconventional apprenticeship at High Bridge Works, he was appointed Secretary of the newly formed Whittle Dene Water Company. The same year he proposed to the town council of Newcastle the conversion of one of the quayside cranes to his hydraulic operation which, if successful, should also be applied to a further four cranes. This was done by the Newcastle Cranage Company at High Bridge Works. In 1847 he gave up law and formed W.G.Armstrong \& Co. to manufacture hydraulic machinery in a works at Elswick. Orders for cranes, hoists, dock gates and bridges were obtained from mines; docks and railways.
    Early in the Crimean War, the War Office asked him to design and make submarine mines to blow up ships that were sunk by the Russians to block the entrance to Sevastopol harbour. The mines were never used, but this set him thinking about military affairs and brought him many useful contacts at the War Office. Learning that two eighteen-pounder British guns had silenced a whole Russian battery but were too heavy to move over rough ground, he carried out a thorough investigation and proposed light field guns with rifled barrels to fire elongated lead projectiles rather than cast-iron balls. He delivered his first gun in 1855; it was built of a steel core and wound-iron wire jacket. The barrel was multi-grooved and the gun weighed a quarter of a ton and could fire a 3 lb (1.4 kg) projectile. This was considered too light and was sent back to the factory to be rebored to take a 5 lb (2.3 kg) shot. The gun was a complete success and Armstrong was then asked to design and produce an equally successful eighteen-pounder. In 1859 he was appointed Engineer of Rifled Ordnance and was knighted. However, there was considerable opposition from the notably conservative officers of the Army who resented the intrusion of this civilian engineer in their affairs. In 1862, contracts with the Elswick Ordnance Company were terminated, and the Government rejected breech-loading and went back to muzzle-loading. Armstrong resigned and concentrated on foreign sales, which were successful worldwide.
    The search for a suitable proving ground for a 12-ton gun led to an interest in shipbuilding at Elswick from 1868. This necessitated the replacement of an earlier stone bridge with the hydraulically operated Tyne Swing Bridge, which weighed some 1450 tons and allowed a clear passage for shipping. Hydraulic equipment on warships became more complex and increasing quantities of it were made at the Elswick works, which also flourished with the reintroduction of the breech-loader in 1878. In 1884 an open-hearth acid steelworks was added to the Elswick facilities. In 1897 the firm merged with Sir Joseph Whitworth \& Co. to become Sir W.G.Armstrong Whitworth \& Co. After Armstrong's death a further merger with Vickers Ltd formed Vickers Armstrong Ltd.
    In 1879 Armstrong took a great interest in Joseph Swan's invention of the incandescent electric light-bulb. He was one of those who formed the Swan Electric Light Company, opening a factory at South Benwell to make the bulbs. At Cragside, his mansion at Roth bury, he installed a water turbine and generator, making it one of the first houses in England to be lit by electricity.
    Armstrong was a noted philanthropist, building houses for his workforce, and endowing schools, hospitals and parks. His last act of charity was to purchase Bamburgh Castle, Northumbria, in 1894, intending to turn it into a hospital or a convalescent home, but he did not live long enough to complete the work.
    [br]
    Principal Honours and Distinctions
    Knighted 1859. FRS 1846. President, Institution of Mechanical Engineers; Institution of Civil Engineers; British Association for the Advancement of Science 1863. Baron Armstrong of Cragside 1887.
    Further Reading
    E.R.Jones, 1886, Heroes of Industry', London: Low.
    D.J.Scott, 1962, A History of Vickers, London: Weidenfeld \& Nicolson.
    IMcN

    Biographical history of technology > Armstrong, Sir William George, Baron Armstrong of Cragside

  • 6 McNeill, Sir James McFadyen

    SUBJECT AREA: Ports and shipping
    [br]
    b. 19 August 1892 Clydebank, Scotland
    d. 24 July 1964 near Glasgow, Scotland
    [br]
    Scottish naval architect, designer of the Cunard North Atlantic Liners Queen Mary and Queen Elizabeth.
    [br]
    McNeill was born in Clydebank just outside Glasgow, and was to serve that town for most of his life. After education at Clydebank High School and then at Allan Glen's in Glasgow, in 1908 he entered the shipyard of John Brown \& Co. Ltd as an apprentice. He was encouraged to matriculate at the University of Glasgow, where he studied naval architecture under the (then) unique Glasgow system of "sandwich" training, alternately spending six months in the shipyard, followed by winter at the Faculty of Engineering. On graduating in 1915, he joined the Army and by 1918 had risen to the rank of Major in the Royal Field Artillery.
    After the First World War, McNeill returned to the shipyard and in 1928 was appointed Chief Naval Architect. In 1934 he was made a local director of the company. During the difficult period of the 1930s he was in charge of the technical work which led to the design, launching and successful completion of the great liners Queen Mary and Queen Elizabeth. Some of the most remarkable ships of the mid-twentieth century were to come from this shipyard, including the last British battleship, HMS Vanguard, and the Royal Yacht Britannia, completed in 1954. From 1948 until 1959, Sir James was Managing Director of the Clydebank part of the company and was Deputy Chairman by the time he retired in 1962. His public service was remarkable and included chairmanship of the Shipbuilding Conference and of the British Ship Research Association, and membership of the Committee of Lloyd's Register of Shipping.
    [br]
    Principal Honours and Distinctions
    Knight Commander of the Royal Victorian Order 1954. CBE 1950. FRS 1948. President, Institution of Engineers and Shipbuilders in Scotland 1947–9. Honorary Vice-President, Royal Institution of Naval Architects. Military Cross (First World War).
    Bibliography
    1935, "Launch of the quadruple-screw turbine steamer Queen Mary", Transactions of the Institution of Naval Architects 77:1–27 (in this classic paper McNeill displays complete mastery of a difficult subject; it is recorded that prior to launch the estimate for travel of the ship in the River Clyde was 1,194 ft (363.9 m), and the actual amount recorded was 1,196 ft (364.5m)!).
    FMW

    Biographical history of technology > McNeill, Sir James McFadyen

  • 7 Fairbairn, William

    SUBJECT AREA: Ports and shipping
    [br]
    b. 19 February 1789 Kelso, Roxburghshire, Scotland
    d. 18 August 1874 Farnham, Surrey, England
    [br]
    Scottish engineer and shipbuilder, pioneer in the use of iron in structures.
    [br]
    Born in modest circumstances, Fairbairn nevertheless enjoyed a broad and liberal education until around the age of 14. Thereafter he served an apprenticeship as a millwright in a Northumberland colliery. This seven-year period marked him out as a man of determination and intellectual ability; he planned his life around the practical work of pit-machinery maintenance and devoted his limited free time to the study of mathematics, science and history as well as "Church, Milton and Recreation". Like many before and countless thousands after, he worked in London for some difficult and profitless years, and then moved to Manchester, the city he was to regard as home for the rest of his life. In 1816 he was married. Along with a workmate, James Lillie, he set up a general engineering business, which steadily enlarged and ultimately involved both shipbuilding and boiler-making. The partnership was dissolved in 1832 and Fairbairn continued on his own. Consultancy work commissioned by the Forth and Clyde Canal led to the construction of iron steamships by Fairbairn for the canal; one of these, the PS Manchester was lost in the Irish Sea (through the little-understood phenomenon of compass deviation) on her delivery voyage from Manchester to the Clyde. This brought Fairbairn to the forefront of research in this field and confirmed him as a shipbuilder in the novel construction of iron vessels. In 1835 he operated the Millwall Shipyard on the Isle of Dogs on the Thames; this is regarded as one of the first two shipyards dedicated to iron production from the outset (the other being Tod and MacGregor of Glasgow). Losses at the London yard forced Fairbairn to sell off, and the yard passed into the hands of John Scott Russell, who built the I.K. Brunel -designed Great Eastern on the site. However, his business in Manchester went from strength to strength: he produced an improved Cornish boiler with two firetubes, known as the Lancashire boiler; he invented a riveting machine; and designed the beautiful swan-necked box-structured crane that is known as the Fairbairn crane to this day.
    Throughout his life he advocated the widest use of iron; he served on the Admiralty Committee of 1861 investigating the use of this material in the Royal Navy. In his later years he travelled widely in Europe as an engineering consultant and published many papers on engineering. His contribution to worldwide engineering was recognized during his lifetime by the conferment of a baronetcy by Queen Victoria.
    [br]
    Principal Honours and Distinctions
    Created Baronet 1869. FRS 1850. Elected to the Academy of Science of France 1852. President, Institution of Mechnical Engineers 1854. Royal Society Gold Medal 1860. President, British Association 1861.
    Bibliography
    Fairbairn wrote many papers on a wide range of engineering subjects from water-wheels to iron metallurgy and from railway brakes to the strength of iron ships. In 1856 he contributed the article on iron to the 8th edition of Encyclopaedia Britannica.
    Further Reading
    W.Pole (ed.), 1877, The Life of Sir William Fairbairn Bart, London: Longmans Green; reprinted 1970, David and Charles Reprints (written in part by Fairbairn, but completed and edited by Pole).
    FMW

    Biographical history of technology > Fairbairn, William

  • 8 Froude, William

    SUBJECT AREA: Ports and shipping
    [br]
    b. 1810 Dartington, Devon, England
    d. 4 May 1879 Simonstown, South Africa
    [br]
    English naval architect; pioneer of experimental ship-model research.
    [br]
    Froude was educated at a preparatory school at Buckfastleigh, and then at Westminster School, London, before entering Oriel College, Oxford, to read mathematics and classics. Between 1836 and 1838 he served as a pupil civil engineer, and then he joined the staff of Isambard Kingdom Brunel on various railway engineering projects in southern England, including the South Devon Atmospheric Railway. He retired from professional work in 1846 and lived with his invalid father at Dartington Parsonage. The next twenty years, while apparently unproductive, were important to Froude as he concentrated his mind on difficult mathematical and scientific problems. Froude married in 1839 and had five children, one of whom, Robert Edmund Froude (1846–1924), was to succeed him in later years in his research work for the Admiralty. Following the death of his father, Froude moved to Paignton, and there commenced his studies on the resistance of solid bodies moving through fluids. Initially these were with hulls towed through a house roof storage tank by wires taken over a pulley and attached to falling weights, but the work became more sophisticated and was conducted on ponds and the open water of a creek near Dartmouth. Froude published work on the rolling of ships in the second volume of the Transactions of the then new Institution of Naval Architects and through this became acquainted with Sir Edward Reed. This led in 1870 to the Admiralty's offer of £2,000 towards the cost of an experimental tank for ship models at Torquay. The tank was completed in 1872 and tests were carried out on the model of HMS Greyhound following full-scale towing trials which had commenced on the actual ship the previous year. From this Froude enunciated his Law of Comparisons, which defines the rules concerning the relationship of the power required to move geometrically similar floating bodies across fluids. It enabled naval architects to predict, from a study of a much less expensive and smaller model, the resistance to motion and the power required to move a full-size ship. The work in the tank led Froude to design a model-cutting machine, dynamometers and machinery for the accurate ruling of graph paper. Froude's work, and later that of his son, was prodigious and covered many fields of ship design, including powering, propulsion, rolling, steering and stability. In only six years he had stamped his academic authority on the new science of hydrodynamics, served on many national committees and corresponded with fellow researchers throughout the world. His health suffered and he sailed for South Africa to recuperate, but he contracted dysentery and died at Simonstown. He will be remembered for all time as one of the greatest "fathers" of naval architecture.
    [br]
    Principal Honours and Distinctions
    FRS. Honorary LLD Glasgow University.
    Bibliography
    1955, The Papers of William Froude, London: Institution of Naval Architects (the Institution also published a memoir by Sir Westcott Abell and an evaluation of his work by Dr R.W.L. Gawn of the Royal Corps of Naval Constructors; this volume reprints all Froude's papers from the Institution of Naval Architects and other sources as diverse as the British Association, the Royal Society of Edinburgh and the Institution of Civil Engineers.
    Further Reading
    A.T.Crichton, 1990, "William and Robert Edmund Froude and the evolution of the ship model experimental tank", Transactions of the Newcomen Society 61:33–49.
    FMW

    Biographical history of technology > Froude, William

  • 9 Herreshoff, Nathaniel Greene

    SUBJECT AREA: Ports and shipping
    [br]
    b. 18 March 1848 Bristol, Rhode Island, USA
    d. 2 June 1938 Bristol, Rhode Island, USA
    [br]
    American naval architect and designer of six successful America's Cup defenders.
    [br]
    Herreshoff, or, as he was known, Captain Nat, was seventh in a family of nine, four of whom became blind in childhood. Association with such problems may have sharpened his appreciation of shape and form; indeed, he made a lengthy European small-boat trip with a blind brother. While working on yacht designs, he used three-dimensional models in conjunction with the sheer draught on the drawing-board. With many of the family being boatbuilders, he started designing at the age of 16 and then decided to make this his career. As naval architecture was not then a graduating subject, he studied mechanical engineering at Massachusetts Institute of Technology. While still studying, c.1867, he broke new ground by preparing direct reading time handicapping tables for yachts up to 110 ft (33.5 m) long. After working with the Corliss Company, he set up the Herreshoff Manufacturing Company, in partnership with J.B.Herreshoff, as shipbuilders and engineers. Over the years their output included steam machinery, fishing vessels, pleasure craft and racing yachts. They built the first torpedo boat for the US Navy and another for the Royal Navy, the only such acquisition in the late nineteenth century. Herreshoff designed six of the world's greatest yachts, of the America's Cup, between 1890 and 1920. His accomplishments included new types of lightweight wood fasteners, new systems of framing, hollow spars and better methods of cutting sails. He continued to work full-time until 1935 and his work was internationally acclaimed. He maintained cordial relations with his British rivals Fife, Nicholson and G.L. Watson, and enjoyed friendship with his compatriot Edward Burgess. Few will ever match Herreshoff as an all-round engineer and designer.
    [br]
    Principal Honours and Distinctions
    Herreshoff was one of the very few, other than heads of state, to become an Honorary Member of the New York Yacht Club.
    Further Reading
    L.F.Herreshoff, 1953, Capt. Nat Herreshoff. The Wizard of Bristol, White Plains, NY: Sheridan House; 2nd edn 1981.
    FMW

    Biographical history of technology > Herreshoff, Nathaniel Greene

  • 10 Pounder, Cuthbert Coulson

    [br]
    b. 10 May 1891 Hartlepool, England
    d. 18 December 1982 Belfast (?), Northern Ireland
    [br]
    English marine engineer and exponent of the slow-speed diesel engine.
    [br]
    Pounder served an apprenticeship with Richardsons Westgarth, marine engineers in north east England. Shortly after, he moved to Harland \& Wolff of Belfast and there fulfilled his life's work. He rose to the rank of Director but is remembered for his outstanding leadership in producing the most advanced steam and diesel machinery installations of their time. Harland \& Wolff were the main licensees for the Burmeister \& Wain marine diesel system, and the Copenhagen company made most of the decisions on design; however, Pounder often found himself in the hot seat and once had the responsibility of concurring with the shipyard's decision to build three Atlantic liners with the largest diesel engines in the world, well beyond the accepted safe levels of extrapolation. With this, Belfast secured worldwide recognition as builders of diesel-driven liners. During the German occupation of Denmark (1940–5), the engineering department at Belfast worked on its own and through systematic research and experimentation built up a database of information that was invaluable in the postwar years.
    Pounder was instrumental in the development of airless injection diesel fuel pumps. He was a stalwart supporter of all research and development, and while at Belfast was involved in the building of twelve hundred power units. While in his twenties, Pounder began a literary career which continued for sixty years. The bulk of his books and papers were on engineering and arguably the best known is his work on marine diesel engines, which ran to many editions. He was Chairman of Pametrada, the marine engineering research council of Great Britain, and later of the machinery committee of the British Ship Research Association. He regarded good relations within the industry as a matter of paramount importance.
    [br]
    Principal Honours and Distinctions
    President, Institute of Marine Engineers; Denny Gold Medal 1839, 1959. Institution of Mechanical Engineers Ackroyd Stewart Award; James Clay ton Award.
    Further Reading
    Michael Moss and John R.Hume, 1986, Shipbuilders to the World, Belfast: Blackstaff.
    FMW

    Biographical history of technology > Pounder, Cuthbert Coulson

См. также в других словарях:

  • British Chinese — Anglo Chinese redirects here. For the language, see Singdarin. British Chinese 英國華僑 英国华侨 …   Wikipedia

  • Ports fluviaux — Port (marine) Pour les articles homonymes, voir Port. Le port du Havre (Seine Maritime, France) …   Wikipédia en Français

  • British African-Caribbean community — For Caribbeans in the UK of Indian origin, see British Indo Caribbean community. British African Caribbean (British Afro Caribbean) Total population UK, 2001: 565,900 …   Wikipedia

  • British Honduras — British colony 1862–1981 …   Wikipedia

  • British Raj — British Empire in India redirects here. For other uses, see British India (disambiguation). India Indian Empire ← …   Wikipedia

  • British Empire — For a comprehensive list of the territories that formed the British Empire, see Evolution of the British Empire. British Empire …   Wikipedia

  • British Columbia Coast — Howe Sound, along British Columbia s South Coast. The British Columbia Coast or BC Coast is Canada s western continental coastline on the Pacific Ocean. The usage is synonymous with the term West Coast of Canada. In a sense excluding the urban… …   Wikipedia

  • British Columbia Maritime Employers' Association — The British Columbia Maritime Employers Association is an association representing the interests of member companies in industrial relations on Vancouver s and other British Columbian seaports. The BCMEA currently consists of sixty seven member… …   Wikipedia

  • British Isles — This article is about the archipelago in north western Europe. For the group of territories with constitutional links to the United Kingdom, see British Islands. British Isles English: British Isles Irish: Éire agus an Bhreatain Mhór[1] or… …   Wikipedia

  • British Empire — a former collective term for the territories under the leadership or control of the British crown, including those in the Commonwealth of Nations and their colonies, protectorates, dependencies, and trusteeships. [1595 1605] * * * Worldwide… …   Universalium

  • British Mandate of Palestine — Infobox Former Country native name = conventional long name = Mandate for Palestine common name = Palestine| continent = moved from Category:Asia to the Middle East region = the Middle East country = Palestine era = Interwar Period status =… …   Wikipedia

Поделиться ссылкой на выделенное

Прямая ссылка:
Нажмите правой клавишей мыши и выберите «Копировать ссылку»